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Dynamic instability of dislocations due to nucleation of a new phase
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Dislocation lines in a crystal close to a bulk phase transition can be coated by nuclei of a new phase which
for a moving dislocation gives rise to a viscous friction force. In some range of the material parameters this
force leads to a dynamic instability of the defect line, resulting from an intricate interplay between the shape
fluctuations of the defect and the amplitude fluctuations of the nucleus. The instability shows up in the linear
response of the dislocation to a periodic change of the driving force and in the structure factor of the order-
parameter fluctuations of the nucleus.
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In a crystal, undergoing some bulk phase transition, thdriction force. This in turn generates an increase of the local
elastic distortion field around a dislocation induces a corredefect velocity which then proliferates in a self-amplifying
sponding inhomogeneous distribution of local transition temway. Opposite to this, the line tension tries to stretch the
peratures. As a consequence, dislocations close to the trangiefect, and, competing with the former effect, excites an os-
tion point of the reference Crysta| can be coated by nuclei Oﬁillation of the dislocation line at the instability threshold.

a globally unstable phadd—4]. For a moving dislocation, The phenomenon is most easily seen in the linear re-
the continuous dissipation of energy into the attendangPonse function of the defect line to a periodic change of the
nucleus generates a viscous-friction fof&a. If the transi-  Peach-Kaler force[11] driving the glide motion of the dis-
tion is of first Order, an additional dry_friction force appears location. It also shows up in the structure factor of the order-
in the hysteresis temperature range due to phase transfornRarameter fluctuations of the nucleus. A simple way to ob-
tion into a metastable trail behind the def¢6i. Until re-  Serve these quantities without interference by the previously
cently, however, these phenomena have only been discusséigcussed7] roughening mechanism is to avoid the hyster-
for straight dislocation lines moving at a constant velocity€SiS temperature range or, alternatively, to consider the case
[6], disregarding implications of line- and order-parameterOf a second-order transition. We here focus on the more
fluctuations. transparent analysis of the second scenario, although the re-

Allowing such effects, we have recently shofifj that, in ~ Sults are expected to apply as well to weakly first-order tran-
a regime where a Peierls strg® and an inertial ternj9]  sitions. For simplicity reasons our approach will also be re-
can be neglected, the glide motion of a dislocation close to &tricted to the vicinity of the nucleation threshold in the
first-order phase transition obeys a Kardar-Parisi-zhanglobally stable high-symmetry phase.

(KPZ) equation[10], supplemented by a dry-friction force. ~ Choosing the,z plane as the glide plane, we describe the
In Ref.[7] it was argued that, due to the competition betweerfonfigurations of the dislocation line at timidy the Monge

the KPZ nonlinearity and the dry-friction term, the disloca- representationz=h(x,t). Then the coupling to a scalar
tion line develops a zigzaglike roughening behavior. An ad-order-parameter fielg(r,t) of a second-order phase transi-
ditional nucleus-induced viscous-friction force has also beefion is most easily described by the model Hamiltonian
taken into account, but assumed to simply renormalize the

bare mobility coefficient of the dislocation. :j dx

In the present paper we will show that in some range of
the material parameters the viscous-friction term alone gives
rise to a shape instability of the dislocation line which is +f d3r
totally different from the previously discussed roughening
instability. Whereas the latter evolves from local changes of ) i ) i
the slope of the linérelative to the Burgers vectoithe new ~Whereo means the line tension of the dislocatitsee, e.g.,
instability is initiated by local velocity fluctuationgvhich ~ Refs:- [9] and [12]), k is the Peach-Kler force [11], &
simultaneously involve curvature fluctuationsn fact, due = @(T—Tc) measures the temperature distance from the
to a finite relaxation time for readjustments of the nucleus, £Mtical point, and
local acceleration of the defect reduces the nucleus ampli-
tude, and consequently lowers the strength of the viscous-
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critical velocity V,=2\ &2 the wave functiony; becomes
delocalized(as pointed out in Ref[6] and, in a different
context, in Ref[18]), andTy(V,)=T..

Insertion of the spectral representationtbiinto the sec-

positionz=Vt+h(x,t) whereV is the mean velocity of the
defect(to be determined latgr The explicit form, given in
Eq. (2), applies to an isotropic medium with Poisson ratio
and to a dislocation with the component, of its Burgers
vector (compare Ref[7] where, however, the,y plane has ond integral of Eq(3) suggests to introduce the projections
been chosen as the glide plane X, (6D =(8),,0), x,(x.t)=(e,) (where now they
Since in the present context the KPZ nonlinearity is irrel-depend om). Close to the nucleation threshoig(x,t) de-
evant, we can assume an Edwards-Wilkinson-[ik8] pro-  scribes the order-parameter amplitude of the nucleus along
cess forh whereas forp we adopt(as in Ref.[7]) a simple  the dislocation line at timé& In case of uniform motion of a
model-A-type[14] relaxation behavior. A convenient repre- straight defecty, has a constant valué(V) which, together
sentation of this model for the subsequent analysis is thevith the velocityV, is approximatly determine¢as in Ref.
dynamic functiona[15,16] [6]) by the saddle-point Eq%3).
In order to derive these equations explicitly, we use in the
|:J dtdxH{V+a;h+B~L6H/sh—B~1R] first integral of Eq.(3) the chain of identities
(5 [anUT )= — (g .[0,U] ¥g)
=2(d,45 Uik

=2N\"A (9o 19

+f dtd®r o[, @+ NSH/Sp— N o] (3)

whereh,» mean response field47], andB,\ are kinetic
coefficients. From Eq.(3), e.g., the response function

8(h(x,t))/ 8k(x',t") can be generated via where the last form is the only term which survives, aftler

has been expressed via Ef). With regard to an expansion
around \Y, we will define M (V)
=B '\ Y(d,0g .d;5)a-y- In the second integral of
Eq. (3) we use the relationg, ,H i) =—&o, and the defi-
nitions 7(V)=e—gq+(2\) 2V2=a[T-To(V)], S (V)
=(¢g ,¢§3)A=V where S(V) measures the cross section of
the nucleus.

With the notationsr(V)=VM(V) andF=k/B the result-
ing saddle-point equations f&f and X read

fD[h,ﬁ,w,”{o]h(x,t)”ﬁ(x',t')exp[—|[h,”ﬁ,<p,?p]}

=(h(x,t)h(x’,t"))

=B&(h(x,t))/ k(x',t"). 4

In order to eliminate the inconvenieht dependence in
Eqg. (2), we use the transformatiom— {=z—Vt—h(x,t)
which enforces the replacements— d;—(V+d:h) d, and

dx— dx—(9xh)d, . Neglecting the “slope term” ¢,h)[ 24, V+XAT,V)Y(V)=F, (6)
—(9xh)d,]d,, this leads in the second integral of E§) to
the appearance of the non-Hermitian “Hamilton” operator [S(V) (T, V) +uX?(T,V)]X(T,V)=0, (7)

5

involving the imaginary ‘“vector potential” A=V+ g;h
—\d2h, and to a shif— &+ (4ar?) ~1AZ,

As observed in Ref[18] in a similar situation, the
right and left eigenfunctionss, ,¢, and the eigenvalues
—g, of H show the behavior i, (y,{;A)

where the parametric dependencesidmve been made ex-
plicit. Equation (7) describes the nucleation process as a
sharp (mean-field phase transition which in reality is
smeared out by thermal fluctuatiorj20]. Nevertheless,
(x&y=X? for 7?>uS *(V) where S(V) monotonically in-
creases fromS(O)oceg1 to S(V.)=0o0. At the most danger-
ous pointV=0 the condition reads?> ¢ e, wheresgxu is
=,(y,£;0) expl F(2\) AL, ,(A)=¢,(0). The se{y,}  the Lewanjuk-Ginzburg temperature interval of two-
at A=0 consists of scattering statéfer which v is continu-  dimensional nonclassical behavisee, e.g., Ref21]). Thus
ous, and of bound states, captured by the attractive sectiothe saddle-point approximation becomes acceptable for sys-
of the “potential” U(y,¢) [19]. The bound-state wave func- tems close to the tricritical threshold=0 of a first-order
tions are chosen to obeyy( ,#,)=45,, where the scalar transition in the bulkwhich is common in structural phase
product means integration over the whelg plane. transitions.

Whereas the scattering states represent a convenient basisThe possible appearance of an instability already shows
for the description of bulk fluctuations of the order parameteiup in the isotherm$& =F(T,V) of Eq. (6) which below the
¢, the bound states form a natural support for the nucleuslassical nucleation threshold approximately are cubic
attached to the defect. For a static straight dislocation line thparabuladslightly deformed by the weak’ dependence of
ground-state “energy”’eq=a(To—T.) defines the nucle- the factorM(V)S(V)]. As illustrated in Fig. 1, there exists a
ation temperatur@, close to whichyy(y,{) determines the critical isothermT=T,; which has a horizontal slope at the
order-parameter profile transverse to the defect line. Whenucleation thresholdT=Ty(V). In fact, the intersection

=—d;—[a,+(2n) AP+ U,

the dislocation moves with a constant velocitythe nucle-
ation threshold is shifted td4(V)=To— (4a\?) ~1V2, and
the order-parameter profile deforms intg (y,¢;V). At the

value V4, defined byTy(V,)=T,, will later be shown to
generically obey;<V,. For temperature$<T, there ap-
pears a velocity interval where the isotherms display the un-
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F The model(8) is a convenient basis for the discussion of
Gaussian fluctuations around the mean-field behavior, pre-
sented in[6] and summarized in Ref6) and Ref.(7). It
obeys the property of detailed balance only in the nucleus-
free regimeX=0, and in the more interesting case=0

where also the pairs of variablesh and’y, y decouple. The
coupling terms, arising fo¥# 0 are responsible for the dy-
namic instability of interest which penetrates all correlation
Vi |4 and response functions of the system. Anharmonic correc-
tions to Eq.(8) will only be important for the saturation

FIG. 1. F,V phase diagram, showing a stable, a critical, and anagime of the defectreminding on the question of the late-
unstable isothernicorresponding to the lower, the middle, and the stage behavior of spinodal decomposition

upper curve Outside the nucleation regime all isotherms collapse In order to generate the set of correlation and response

o the trivial lineF=V. functions, one simply has to invert the kernel of the bilinear
- form composing the integrand of EB). The result for the
Etit?llev)begavclj%rf;e(s-r’\;) Esg\i/:cf(;rélvlglzao.ingtgiili?youlri]r?grry spatial Fourier transfornR(q,t) of the response function
W)= - — s ; ; ; 2
=T4(V) in the T,V “phase diagram” shown in Fig. 2. Z(|>;,|t)re—;dhs(x,t)h(0,0)> in_the hydrodynamic  regimey
We now take care of thermal noise and of shape fluctua-
tions of the defect, caused by oscillations of the Peach-

Kohler force. For72<g§ the resulting order-parameter fluc- R(q,t)=®(t)i e Ddt_ ( 1— A) e Allt| (9)
tuations of the nucleus around, e.g., the positive koot Eq. F’ 2\

(7) are included in x(x,t)=xo(x,t)=X and x(x.) Here, ©(t) is the Heaviside step function, and
=xo(X,t). An effective weight functional eXp-Jh,h,x,x}

can be obtained by integrating the corresponding weight with B lo—\ 2\E’

the full action(3) over the fieldsy, , x, with »>0. This can D=A+ R A= 14x2y" (10)

safely be done by perturbation theory, because in the spec-

trum of the eigenvalues these “hard-mode” fields are sepaThe combination® *o—\ and 1+ X2Y' both are positive
rated by a gap from the ground-state amplityde Since,  which in the former case follows from a numerical estimate
moreover, this procedure does not create dangereous fluctugiven below, and in the latter case is obvious close to the
tions in x, a tree approximation will be sufficient. Keeping nucleation threshold. Consequently, the two hydrodynamic
track of the harmonic terms only, one finds, with the notationmodes appearing in E(9) are stable below the spinodal line
X'=ayX, T=T4(V) where the stretching effect due to the line tension
dominates. They both become unstable above the spinodal

- line where the self-amplifying acceleration effect, explained
J:f dtdx{h[(1+X?Y")ah— (B~ *o+AX?Y")dzh in the introduction, prevails. At the stability threshold
=T4(V) Egs.(9) and(10) cease to be valid, and instead the
+2XYX—Bflﬁ]ﬂL;([(?tX—?\(&iXﬂLZTX) stretching and acceleration mechanisms cooperate to pro-

_ duce, again fog?<|7|, the damped oscillatory behavior
+2N7X' (sh—Nd2h)— Ax]}. (8)

C 1 . 2
R(q,t)=0(t) ————sin(Clq[t) e "I (11)
B "o

where A(V)=N\(¢q .5 )a=v. The choiceX>0, showing — ld

up in the coupling term of Eq(8), has no effect on the

quantities of interest which all depend ¥4 only. (reminding on acoustic phonon excitationgith
DA
T C?=2\DA|7], P=N+ o (12)
——
\\ Of course, the full crossover behavior between E§sand
Eqg. (11) can also be extracted fro(8).

To(V) Naturally, the above instability effects also enter

Ts(V) the order-parameter fluctuationS(x,t)={x(x,t) x(0,0)).
The corresponding structure factor is given by

S(q,0)=\|G(q,0)|?+ B 1K(q,w)|> where G(x,t)
4 = (x(XHX(0,0)), and K(x,t)=(x(x,)h(0,0)). In the re-
FIG. 2. T,V phase diagram, showing the isotherms of Fig. 1, thedime q?<|7| it is convenient to normalize the contributions
classical nucleation regim&<T,(V) and the spinoidal liner  of both hydrodynamic modes such that their frequency inte-
=T4V). grals become equal to 1. This can be achieved by extracting
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an appropriate amplitude from each contribution which foradopted the estimate,x10 2x2. After insertion of the
the diffusion mode turns out to be smaller by a faiéd] 7|. mean-field expressiop?(T=T.)=—U/u into Eq. (1), we
Neglecting therefore the diffusion part, one arrives at thefyrthermore finds?H/sU%= — Q/(2u) (£ meaning the vol-
result ume, so thatk?/u essentially measures the mean-field jump
of the bulk modulus at ;. Since this jump will at most be of
S(q,0)=Q 1 (13) the order of the shear modulys of the crystal(see, e.g.,
’ w?+[A]7]]2 Ref.[12]), we obtainV3/V2~10°\B/ u. Insertion of the ap-
. proximate values\~10',B~10 % u~10" in cgs units,
with adopted from Refs[22] and [12], eventually leads to the
2 resultV,/V,~10"! at least which confirms our earlier as-
2\ X |7/ (14) sertion. In Eq.(3) all lengths are measured in units of the
1+ X2y’ - lattice spacinga [due to the normalization of theV(p)?
term]. Thereforeo = ub?/a= u (see, e.g., Ref12]) which
At T=T4(V) one finds finally implies B~ 1a/\~10%, supporting the statement be-
low Eq. (10).
1 In conclusion, the above results show that the scenario of
(0+C|q)2+(T'g?)? uniform motion of a straight dislocation line, coated by a
new phase, does not apply in the regifmgV)<T<Ty(V)
where generically spinodal-like dynamic instabilities occur.

, (159  The chances to observe these in experiments are especially
promising for materials with a large striction effect at the
ofgansition. Candidates of such systems are in particular rare-
earth metals for which the two-length-scale phenomenon has

to the one-dimensional order-parameter fluctuations alongfee” observe{23], and recently related to the presence of
the dislocation line. islocations{ 24].

_ We now demonstrate that for the behavigy—(15) there Discussions with A. A. Boulbitch, R. Burghaus, and G.
is a finite window in the parameter space of the md@t Foltin are gratefully acknowledged. A.L.K. wishes to express
(8). The condition To(V1)=Tg(Vy) at first implies V1 pis gratitude to the University of Biseldorf for its warm
=2\2uS Y(Vy)M "1(V,)=2\°Bu. Consequently,Vi/V2  hospitality. This work has been supported by the Deutsche
~\Bu/ey=10°ABu/k? where from Ref.[6] we have Forschungsgemeinschaft under SFB 237.

Q=A+B"*

S(q,w)=%

1
+
(w—Cla))?+(I'g?)?

i.e., the appearance of a Stokes and an anti-Stokes peak.
has to remember, of course, that E4s3) and(15) only refer
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