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Dynamic instability of dislocations due to nucleation of a new phase
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Dislocation lines in a crystal close to a bulk phase transition can be coated by nuclei of a new phase which
for a moving dislocation gives rise to a viscous friction force. In some range of the material parameters this
force leads to a dynamic instability of the defect line, resulting from an intricate interplay between the shape
fluctuations of the defect and the amplitude fluctuations of the nucleus. The instability shows up in the linear
response of the dislocation to a periodic change of the driving force and in the structure factor of the order-
parameter fluctuations of the nucleus.
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In a crystal, undergoing some bulk phase transition,
elastic distortion field around a dislocation induces a co
sponding inhomogeneous distribution of local transition te
peratures. As a consequence, dislocations close to the tr
tion point of the reference crystal can be coated by nucle
a globally unstable phase@1–4#. For a moving dislocation
the continuous dissipation of energy into the attend
nucleus generates a viscous-friction force@5#. If the transi-
tion is of first order, an additional dry-friction force appea
in the hysteresis temperature range due to phase transfo
tion into a metastable trail behind the defect@5#. Until re-
cently, however, these phenomena have only been discu
for straight dislocation lines moving at a constant veloc
@6#, disregarding implications of line- and order-parame
fluctuations.

Allowing such effects, we have recently shown@7# that, in
a regime where a Peierls stress@8# and an inertial term@9#
can be neglected, the glide motion of a dislocation close
first-order phase transition obeys a Kardar-Parisi-Zh
~KPZ! equation@10#, supplemented by a dry-friction force
In Ref. @7# it was argued that, due to the competition betwe
the KPZ nonlinearity and the dry-friction term, the disloc
tion line develops a zigzaglike roughening behavior. An a
ditional nucleus-induced viscous-friction force has also b
taken into account, but assumed to simply renormalize
bare mobility coefficient of the dislocation.

In the present paper we will show that in some range
the material parameters the viscous-friction term alone g
rise to a shape instability of the dislocation line which
totally different from the previously discussed rougheni
instability. Whereas the latter evolves from local changes
the slope of the line~relative to the Burgers vector!, the new
instability is initiated by local velocity fluctuations~which
simultaneously involve curvature fluctuations!. In fact, due
to a finite relaxation time for readjustments of the nucleus
local acceleration of the defect reduces the nucleus am
tude, and consequently lowers the strength of the visco
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friction force. This in turn generates an increase of the lo
defect velocity which then proliferates in a self-amplifyin
way. Opposite to this, the line tension tries to stretch
defect, and, competing with the former effect, excites an
cillation of the dislocation line at the instability threshold.

The phenomenon is most easily seen in the linear
sponse function of the defect line to a periodic change of
Peach-Ko¨hler force@11# driving the glide motion of the dis-
location. It also shows up in the structure factor of the ord
parameter fluctuations of the nucleus. A simple way to o
serve these quantities without interference by the previou
discussed@7# roughening mechanism is to avoid the hyste
esis temperature range or, alternatively, to consider the
of a second-order transition. We here focus on the m
transparent analysis of the second scenario, although th
sults are expected to apply as well to weakly first-order tr
sitions. For simplicity reasons our approach will also be
stricted to the vicinity of the nucleation threshold in th
globally stable high-symmetry phase.

Choosing thex,z plane as the glide plane, we describe t
configurations of the dislocation line at timet by the Monge
representationz5h(x,t). Then the coupling to a scala
order-parameter fieldw(r,t) of a second-order phase trans
tion is most easily described by the model Hamiltonian

H5E dxFs2 ~]xh!22khG
1E d3r F1

2
~¹w!21

«1U~h!

2
w21

u

4
w4G , ~1!

wheres means the line tension of the dislocation~see, e.g.,
Refs. @9# and @12#!, k is the Peach-Ko¨hler force @11#, «
5a(T2Tc) measures the temperature distance from
critical point, and

U5k
bz

2p

122n

12n

y

@z2Vt2h~x,t !#21y2
. ~2!

Up to a coupling constantk the expression~2! represents the
trace of the elastic strain field generated by a dislocationy.
©2001 The American Physical Society05-1
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positionz5Vt1h(x,t) whereV is the mean velocity of the
defect ~to be determined later!. The explicit form, given in
Eq. ~2!, applies to an isotropic medium with Poisson ration,
and to a dislocation with thez componentbz of its Burgers
vector ~compare Ref.@7# where, however, thex,y plane has
been chosen as the glide plane!.

Since in the present context the KPZ nonlinearity is irr
evant, we can assume an Edwards-Wilkinson-like@13# pro-
cess forh whereas forw we adopt~as in Ref.@7#! a simple
model-A-type@14# relaxation behavior. A convenient repre
sentation of this model for the subsequent analysis is
dynamic functional@15,16#

I 5E dtdx h̃@V1] th1B21dH/dh2B21h̃#

1E dtd3r w̃@] t w1ldH/dw2lw̃# ~3!

where h̃,w̃ mean response fields@17#, and B,l are kinetic
coefficients. From Eq.~3!, e.g., the response functio
d^h(x,t)&/dk(x8,t8) can be generated via

E D@h,h̃,w,w̃# h~x,t !h̃~x8,t8!exp$2I @h,h̃,w,w̃#%

[^h~x,t !h̃~x8,t8!&

5Bd^h~x,t !&/dk~x8,t8!. ~4!

In order to eliminate the inconvenienth dependence in
Eq. ~2!, we use the transformationz→z[z2Vt2h(x,t)
which enforces the replacements] t→] t2(V1] th) ]z and
]x→]x2(]xh)]z . Neglecting the ‘‘slope term’’ (]xh)@2]x
2(]xh)]z#]z , this leads in the second integral of Eq.~3! to
the appearance of the non-Hermitian ‘‘Hamilton’’ operato

H[2]y
22@]z1~2l!21A#21U, ~5!

involving the imaginary ‘‘vector potential’’ A[V1] th
2l]x

2h, and to a shift«→«1(4al2)21A2.
As observed in Ref.@18# in a similar situation, the

right and left eigenfunctionscn
1 ,cn

2 and the eigenvalue
2«n of H show the behavior cn

6(y,z;A)
5cn(y,z;0) exp@ 7(2l)21Az#, «n(A)5«n(0). The set$cn%
at A50 consists of scattering states~for which n is continu-
ous!, and of bound states, captured by the attractive sec
of the ‘‘potential’’ U(y,z) @19#. The bound-state wave func
tions are chosen to obey (cm ,cn)5dmn where the scalar
product means integration over the wholey,z plane.

Whereas the scattering states represent a convenient
for the description of bulk fluctuations of the order parame
w, the bound states form a natural support for the nucl
attached to the defect. For a static straight dislocation line
ground-state ‘‘energy’’«05a(T02Tc) defines the nucle-
ation temperatureT0, close to whichc0(y,z) determines the
order-parameter profile transverse to the defect line. W
the dislocation moves with a constant velocityV, the nucle-
ation threshold is shifted toT0(V)5T02(4al2)21V2, and
the order-parameter profile deforms intoc0

1(y,z;V). At the
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critical velocity Vc[2l«0
1/2 the wave functionc0

1 becomes
delocalized~as pointed out in Ref.@6# and, in a different
context, in Ref.@18#!, andT0(Vc)5Tc .

Insertion of the spectral representation ofH into the sec-
ond integral of Eq.~3! suggests to introduce the projection
xn(x,t)[(cn

2 ,w), x̃n(x,t)[(w̃,cn
1) ~where now thecn

6

depend onA). Close to the nucleation thresholdx0(x,t) de-
scribes the order-parameter amplitude of the nucleus a
the dislocation line at timet. In case of uniform motion of a
straight defect,x0 has a constant valueX(V) which, together
with the velocityV, is approximatly determined~as in Ref.
@6#! by the saddle-point Eqs.~3!.

In order to derive these equations explicitly, we use in
first integral of Eq.~3! the chain of identities

~c0
1 ,@]hU# c0

1!52~c0
1 ,@]zU# c0

1!

52~]zc0
1 ,Uc0

1!

52l21A ~]zc0
1 ,]zc0

1!

where the last form is the only term which survives, afterU
has been expressed via Eq.~5!. With regard to an expansion
around V we will define M (V)
[B21l21(]zc0

1 ,]zc0
1)A5V . In the second integral o

Eq. ~3! we use the relation (c0
2 ,H c0

1)52«0, and the defi-
nitions t(V)[«2«01(2l)22V25a@T2T0(V)#, S21(V)
[(c0

2 ,c0
13)A5V whereS(V) measures the cross section

the nucleus.
With the notationsY(V)[VM(V) andF[k/B the result-

ing saddle-point equations forV andX read

V1X2~T,V!Y~V!5F, ~6!

@S~V!t~T,V!1uX2~T,V!#X~T,V!50, ~7!

where the parametric dependences onT have been made ex
plicit. Equation ~7! describes the nucleation process as
sharp ~mean-field! phase transition which in reality is
smeared out by thermal fluctuations@20#. Nevertheless,
^x0

2&'X2 for t2@uS21(V) where S(V) monotonically in-
creases fromS(0)}«0

21 to S(Vc)5`. At the most danger-
ous pointV50 the condition readst2@«G«0 where«G}u is
the Lewanjuk-Ginzburg temperature interval of tw
dimensional nonclassical behavior~see, e.g., Ref.@21#!. Thus
the saddle-point approximation becomes acceptable for
tems close to the tricritical thresholdu50 of a first-order
transition in the bulk~which is common in structural phas
transitions!.

The possible appearance of an instability already sho
up in the isothermsF5F(T,V) of Eq. ~6! which below the
classical nucleation threshold approximately are cu
parabulas@slightly deformed by the weakV dependence of
the factorM (V)S(V)#. As illustrated in Fig. 1, there exists
critical isothermT5T1 which has a horizontal slope at th
nucleation thresholdT5T0(V). In fact, the intersection
value V1, defined byT0(V1)5T1, will later be shown to
generically obeyV1,Vc . For temperaturesT,T1 there ap-
pears a velocity interval where the isotherms display the
5-2
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stable behaviorF8(T,V)[]VF(T,V),0. The boundary
F8(T,V)50 defines a spinodal-like instability lineT
5Ts(V) in the T,V ‘‘phase diagram’’ shown in Fig. 2.

We now take care of thermal noise and of shape fluct
tions of the defect, caused by oscillations of the Pea
Köhler force. Fort2!«1

2 the resulting order-parameter fluc
tuations of the nucleus around, e.g., the positive rootX of Eq.
~7! are included in x(x,t)[x0(x,t)2X and x̃(x,t)
[x̃0(x,t). An effective weight functional exp$2J@h̃,h,x̃,x#%
can be obtained by integrating the corresponding weight w
the full action~3! over the fieldsx̃n , xn with n.0. This can
safely be done by perturbation theory, because in the s
trum of the eigenvalues these ‘‘hard-mode’’ fields are se
rated by a gap from the ground-state amplitudex0. Since,
moreover, this procedure does not create dangereous flu
tions in x, a tree approximation will be sufficient. Keepin
track of the harmonic terms only, one finds, with the notat
X8[]VX,

J5E dtdx$h̃@~11X2Y8!] th2~B21s1lX2Y8!]x
2h

12XYx2B21h̃#1x̃@] tx2l~]x
2x12tx!

12ltX8~] th2l]x
2h!2Lx̃#%. ~8!

where L(V)[l(c0
2 ,c0

2)A5V . The choiceX.0, showing
up in the coupling term of Eq.~8!, has no effect on the
quantities of interest which all depend onX2 only.

FIG. 1. F,V phase diagram, showing a stable, a critical, and
unstable isotherm~corresponding to the lower, the middle, and t
upper curve!. Outside the nucleation regime all isotherms collap
to the trivial lineF5V.

FIG. 2. T,V phase diagram, showing the isotherms of Fig. 1,
classical nucleation regimeT<T0(V) and the spinoidal lineT
5TS(V).
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The model~8! is a convenient basis for the discussion
Gaussian fluctuations around the mean-field behavior,
sented in@6# and summarized in Ref.~6! and Ref.~7!. It
obeys the property of detailed balance only in the nucle
free regimeX50, and in the more interesting caseV50
where also the pairs of variablesh̃,h andx̃,x decouple. The
coupling terms, arising forVÞ0 are responsible for the dy
namic instability of interest which penetrates all correlati
and response functions of the system. Anharmonic cor
tions to Eq. ~8! will only be important for the saturation
regime of the defect~reminding on the question of the late
stage behavior of spinodal decomposition!.

In order to generate the set of correlation and respo
functions, one simply has to invert the kernel of the biline
form composing the integrand of Eq.~8!. The result for the
spatial Fourier transformR(q,t) of the response function
R(x,t)[^h(x,t)h̃(0,0)& in the hydrodynamic regimeq2

!utu reads

R~q,t !5Q~ t !
1

F8
Fe2Dq2t2S 12

D

2l De2DututG . ~9!

Here,Q(t) is the Heaviside step function, and

D[l1
B21s2l

F8
, D[

2lF8

11X2Y8
. ~10!

The combinationsB21s2l and 11X2Y8 both are positive
which in the former case follows from a numerical estima
~given below!, and in the latter case is obvious close to t
nucleation threshold. Consequently, the two hydrodyna
modes appearing in Eq.~9! are stable below the spinodal lin
T5Ts(V) where the stretching effect due to the line tensi
dominates. They both become unstable above the spin
line where the self-amplifying acceleration effect, explain
in the introduction, prevails. At the stability thresholdT
5Ts(V) Eqs.~9! and~10! cease to be valid, and instead th
stretching and acceleration mechanisms cooperate to
duce, again forq2!utu, the damped oscillatory behavior

R~q,t !5Q~ t !
C

B21s2l

1

uqu
sin~Cu qu t ! e2Gq2t ~11!

~reminding on acoustic phonon excitations!, with

C252lDDutu, G[l1
DD

4l
. ~12!

Of course, the full crossover behavior between Eqs.~9! and
Eq. ~11! can also be extracted from~8!.

Naturally, the above instability effects also ent
the order-parameter fluctuationsS(x,t)[^x(x,t)x(0,0)&.
The corresponding structure factor is given
S(q,v)5luG(q,v)u21B21uK(q,v)u2 where G(x,t)
[^x(x,t)x̃(0,0)&, and K(x,t)[^x(x,t)h̃(0,0)&. In the re-
gime q2!utu it is convenient to normalize the contribution
of both hydrodynamic modes such that their frequency in
grals become equal to 1. This can be achieved by extrac

n

e

e
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an appropriate amplitude from each contribution which
the diffusion mode turns out to be smaller by a factorq2/utu.
Neglecting therefore the diffusion part, one arrives at
result

S~q,v!5Q
1

v21@Dutu#2
~13!

with

Q[D1B21S 2lX8

11X2Y8
D 2

utu2. ~14!

At T5Ts(V) one finds

S~q,v!5
Q

4 F 1

~v1Cuqu!21~Gq2!2

1
1

~v2Cuqu!21~Gq2!2G , ~15!

i.e., the appearance of a Stokes and an anti-Stokes peak
has to remember, of course, that Eqs.~13! and~15! only refer
to the one-dimensional order-parameter fluctuations al
the dislocation line.

We now demonstrate that for the behavior~9!–~15! there
is a finite window in the parameter space of the model~6!–
~8!. The condition T0(V1)5Ts(V1) at first implies V1

2

52l2uS21(V1)M 21(V1)'2l3Bu. Consequently, V1
2/Vc

2

'lBu/e0'102lBu/k2 where from Ref. @6# we have
.

ev

05610
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adopted the estimate«0}1022k2. After insertion of the
mean-field expressionw2(T5Tc)52U/u into Eq. ~1!, we
furthermore findd2H/dU252V/(2u) (V meaning the vol-
ume!, so thatk2/u essentially measures the mean-field jum
of the bulk modulus atTc . Since this jump will at most be o
the order of the shear modulusm of the crystal~see, e.g.,
Ref. @12#!, we obtainV1

2/Vc
2'102lB/m. Insertion of the ap-

proximate valuesl'1011,B'1024,m'1011 in cgs units,
adopted from Refs.@22# and @12#, eventually leads to the
result V1 /Vc'1021 at least which confirms our earlier as
sertion. In Eq.~3! all lengths are measured in units of th
lattice spacinga @due to the normalization of the (¹w)2

term#. Therefores}mbz
2/a2}m ~see, e.g., Ref.@12#! which

finally implies B21s/l'104, supporting the statement be
low Eq. ~10!.

In conclusion, the above results show that the scenari
uniform motion of a straight dislocation line, coated by
new phase, does not apply in the regimeTs(V),T,T0(V)
where generically spinodal-like dynamic instabilities occ
The chances to observe these in experiments are espe
promising for materials with a large striction effect at th
transition. Candidates of such systems are in particular r
earth metals for which the two-length-scale phenomenon
been observed@23#, and recently related to the presence
dislocations@24#.
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